0=6x^3+11x^2+10x

Simple and best practice solution for 0=6x^3+11x^2+10x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=6x^3+11x^2+10x equation:


Simplifying
0 = 6x3 + 11x2 + 10x

Reorder the terms:
0 = 10x + 11x2 + 6x3

Solving
0 = 10x + 11x2 + 6x3

Solving for variable 'x'.
Remove the zero:
-10x + -11x2 + -6x3 = 10x + 11x2 + 6x3 + -10x + -11x2 + -6x3

Reorder the terms:
-10x + -11x2 + -6x3 = 10x + -10x + 11x2 + -11x2 + 6x3 + -6x3

Combine like terms: 10x + -10x = 0
-10x + -11x2 + -6x3 = 0 + 11x2 + -11x2 + 6x3 + -6x3
-10x + -11x2 + -6x3 = 11x2 + -11x2 + 6x3 + -6x3

Combine like terms: 11x2 + -11x2 = 0
-10x + -11x2 + -6x3 = 0 + 6x3 + -6x3
-10x + -11x2 + -6x3 = 6x3 + -6x3

Combine like terms: 6x3 + -6x3 = 0
-10x + -11x2 + -6x3 = 0

Factor out the Greatest Common Factor (GCF), '-1x'.
-1x(10 + 11x + 6x2) = 0

Ignore the factor -1.

Subproblem 1

Set the factor 'x' equal to zero and attempt to solve: Simplifying x = 0 Solving x = 0 Move all terms containing x to the left, all other terms to the right. Simplifying x = 0

Subproblem 2

Set the factor '(10 + 11x + 6x2)' equal to zero and attempt to solve: Simplifying 10 + 11x + 6x2 = 0 Solving 10 + 11x + 6x2 = 0 Begin completing the square. Divide all terms by 6 the coefficient of the squared term: Divide each side by '6'. 1.666666667 + 1.833333333x + x2 = 0 Move the constant term to the right: Add '-1.666666667' to each side of the equation. 1.666666667 + 1.833333333x + -1.666666667 + x2 = 0 + -1.666666667 Reorder the terms: 1.666666667 + -1.666666667 + 1.833333333x + x2 = 0 + -1.666666667 Combine like terms: 1.666666667 + -1.666666667 = 0.000000000 0.000000000 + 1.833333333x + x2 = 0 + -1.666666667 1.833333333x + x2 = 0 + -1.666666667 Combine like terms: 0 + -1.666666667 = -1.666666667 1.833333333x + x2 = -1.666666667 The x term is 1.833333333x. Take half its coefficient (0.9166666665). Square it (0.8402777775) and add it to both sides. Add '0.8402777775' to each side of the equation. 1.833333333x + 0.8402777775 + x2 = -1.666666667 + 0.8402777775 Reorder the terms: 0.8402777775 + 1.833333333x + x2 = -1.666666667 + 0.8402777775 Combine like terms: -1.666666667 + 0.8402777775 = -0.8263888895 0.8402777775 + 1.833333333x + x2 = -0.8263888895 Factor a perfect square on the left side: (x + 0.9166666665)(x + 0.9166666665) = -0.8263888895 Can't calculate square root of the right side. The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined.

Solution

x = {0}

See similar equations:

| (2x+2)(3x+1)= | | 11x+12=133 | | 8(y+3)y= | | .08x+.3(200)=.4(130) | | 2x+3x-3=36 | | 7x+16=9x-2 | | v+172=581 | | 13[12+8x]+13-12x=17+2[2x+x] | | k^2-12k+60=0 | | 20 = b19 | | 5v+20=5(4+4v) | | 4x+2x-2=26 | | 12-7p=-43 | | 25d=925 | | v=4v | | 6k=-384 | | 4a-9=a | | 0=-x^2-4x+10 | | 2x-5(3-4x)+4= | | h+-253=228 | | 3x+2x+4=53 | | 3-2(x-4)=3x-4 | | 12-8=2 | | 16=2x+2x-2 | | 8p-16k=0 | | (81x^1/4)^5/4 | | p/6-2p-1/4=3/8 | | 4x+35=4x+89 | | 4(y+3)=4y+2 | | 4(y+3)=4y+1 | | 4(y+3)=4y+6 | | 4(y+3)=4y+5 |

Equations solver categories